Some Structures Containing Stellae Quadrangulae

By Harry Nyman
Research School of Chemistry, Australian National University, PO Box 4, Canberra, ACT 2600, Australia

(Received 18 October 1982; accepted 1 April 1983)

Abstract

The structures of $\mathrm{Tl}_{3} \mathrm{VS}_{4}, \mathrm{Ge}_{8} \mathrm{Na}_{6} \mathrm{Pt}_{8}, \mathrm{Na}_{4} \mathrm{SnS}_{4}$, gehlenite, $\mathrm{Li}_{6} \mathrm{Si}_{2} \mathrm{O}_{7}, \mathrm{NaPb}$ and $\mathrm{Na}_{2} \mathrm{~S}_{4}$ are described by using stellae quadrangulae as binding elements.

Introduction

The usefulness of stellae quadrangulae (SQ's) in describing crystal structures (even complicated ones), was shown in some earlier papers (Nyman, Andersson, Hyde \& O'Keeffe, 1978; Nyman \& Andersson, 1979a,b). There we defined an SQ as a tetrahedron with a cap on every face or a central tetrahedron sharing all faces with tetrahedra. We also described the logical extension of an SQ (seen as a small cluster) to be triangular caps on the edges of the tetrahedra, the final cluster being a γ-brass cluster. Here we present some more examples of structures containing SQ's.

$\mathrm{Tl}_{3} \mathrm{VS}_{4}, \mathrm{Ge}_{8} \mathrm{Na}_{6} \mathbf{P t}_{8}$ and $\mathrm{Na}_{4} \mathrm{SnS}_{4}$; structures related to the SiF $_{4}$-type structure

One of the simplest structures containing SQ's is probably the structure of SiF_{4} (Nyman \& Andersson, 1979b). The structure is cubic with a simple cornerconnected framework of $\mathrm{SiF}_{8} \mathrm{SQ}$'s, Fig. 1.

The structure of $\mathrm{Tl}_{3} \mathrm{VS}_{4}$ (Crevecoeur, 1964) and the isostructural $\mathrm{K}_{3} \mathrm{SbS}_{4}, \mathrm{Na}_{3} \mathrm{SbS}_{4},\left(\mathrm{NH}_{4}\right)_{3} \mathrm{SbS}_{4}$ have the same arrangement of SQ's but here the SQ's are capped. The central VS_{4} tetrahedron has a Tl atom

Fig. 1. The structure of SiF_{4} projected along [001].
0108-7681/83/050529-04\$01.50
capping every edge and each cap is common to two SQ's, Fig. 2. The same type of 'cluster' is found in the structure of $\mathrm{Th}_{6} \mathrm{Mn}_{23}$ (Nyman \& Andersson, 1979a), although the connection of the 'clusters' is different. The coordination polyhedron around Tl is a distorted bisdisphenoid.

The $\mathrm{Na}_{6} \mathrm{Ge}_{8}$ part of the structure of $\mathrm{Ge}_{8} \mathrm{Na}_{6} \mathrm{Pt}_{8}$ (Thronberens \& Schuster, 1979) corresponds exactly to the $\mathrm{Tl}_{3} \mathrm{~S}_{4}$ part of $\mathrm{Tl}_{3} \mathrm{VS}_{4}$. However, instead of having the central tetrahedron of an SQ occupied, as in $\mathrm{Tl}_{3} \mathrm{VS}_{4}$, the four capping tetrahedra are occupied (by Pt atoms) in $\mathrm{Ge}_{8} \mathrm{Na}_{6} \mathrm{Pt}_{8}$, Fig. 3. That is: $\mathrm{Tl}_{3} \mathrm{VS}_{4} \xlongequal{\hat{}}$ $\mathrm{Na}_{3}\left(\mathrm{Pt}_{4}\right) \mathrm{Ge}_{4}=\frac{1}{2} \mathrm{Na}_{6} \mathrm{Pt}_{8} \mathrm{Ge}_{8}$.

Fig. 2. The structure of $\mathrm{Tl}_{3} \mathrm{VS}_{4}$ projected along [001]. Triangular caps are dotted.

Fig. 3. The structure of $\mathrm{Ge}_{8} \mathrm{Na}_{6} \mathrm{Pt}_{8}$ projected along [001]. Triangular caps are dotted.
© 1983 International Union of Crystallography

Fig. 4. The structure of $\mathrm{Na}_{4} \mathrm{SnS}_{4}$ projected along [001]. Triangular caps are dotted.

Fig. 5. Part of the structure of $\mathrm{Na}_{4} \mathrm{SnS}_{4}$, showing the rotation of the central tetrahedra with its triangular caps (dotted).

Fig. 4 shows a projection of the structure of $\mathrm{Na}_{4} \mathrm{SnS}_{4}$ (Jumas, Vermot-Gaud-Daniel \& Philippot, 1973) along its tetragonal c axis. The arrangement of cornerconnected SQ's (here distorted) is the same as in $\mathrm{Tl}_{3} \mathrm{VS}_{4}$. However, in $\mathrm{Na}_{4} \mathrm{SnS}_{4}$ each SQ has only four triangular caps all belonging to one SQ only, and all perpendicular to the c axis. To make room for two capping atoms between the SQ's instead of one common cap, as in $\mathrm{Tl}_{3} \mathrm{VS}_{4}$, the central tetrahedron (of the SQ) with its caps has to rotate around an axis parallel to \mathbf{c}. This rotation, shown in Fig. 5 , is $\sim 25^{\circ}$ in $\mathrm{Na}_{4} \mathrm{SnS}_{4}$, and is the cause for the distortion of the SQ's.

Gehlenite and $\mathrm{Li}_{6} \mathrm{Si}_{2} \mathrm{O}_{7}$; structures related to the $\mathrm{Cr}_{3} \mathbf{S i}$ type structure

Gehlenite, $\mathrm{Ca}_{2} \mathrm{Al}_{2} \mathrm{SiO}_{7}$ (Louisnathan, 1971), which belongs to the melilite family of structures, is also built of SQ's. The connectivity of the SQ's, Fig. 6, differs from that in the previously mentioned structures (although corner-connection) and, if fully opened up, has some resemblance to the structure of $\mathrm{Cr}_{3} \mathrm{Si}$
(Andersson, 1978). The deviation from the $\mathrm{Cr}_{3} \mathrm{Si}$ structure (rotation of the Al-centred SQ's around axes parallel to the c axis) is caused by SiAlO_{7} pairs of tetrahedra sharing edges with the SQ's. One such pair of tetrahedra is indicated in the central part of Fig. 6. The layers of SQ's and tetrahedra are separated by layers of Ca atoms, each coordinated to eight O atoms in the shape of a heavily distorted square antiprism as depicted in the right part of Fig. 6.

An almost identical array of SQ's is found in the structure of $\mathrm{Li}_{6} \mathrm{Si}_{2} \mathrm{O}_{7}$ (Völlenkle, Wittmann \& Nowotny, 1969), Fig. 7. However, here the SQ's are not centred by one atom, as in gehlenite, but by four (Li), cf. $\mathrm{Tl}_{3} \mathrm{VS}_{4}$ and $\mathrm{Ge}_{8} \mathrm{Na}_{6} \mathrm{Pt}_{8}$ above. This forces the $\mathrm{Si}_{2} \mathrm{O}_{7}$ pairs of tetrahedra to move out of the SQ layers and they are here separating these layers by cornerconnection, as shown in the central part of Fig. 7. The right part of Fig. 7 shows the O coordination around the remaining Li atoms. The coordination polyhedron is again a distorted square antiprism, but the Li atoms are off-centre and close to one of the four-sided faces. Also, the antiprisms are at the same level as the SQ layers and not between them, as in gehlenite.

Fig. 6. The structure of gehlenite $\left(\mathrm{Ca}_{2} \mathrm{Al}_{2} \mathrm{SiO}_{7}\right)$ projected along the tetragonal axis. For clarity only one SiAlO_{2} pair of tetrahedra is indicated (dotted).

Fig. 7. The structure of $\mathrm{Li}_{6} \mathrm{Si}_{2} \mathrm{O}_{7}$ projected along the tetragonal axis. Only one $\mathrm{Si}_{2} \mathrm{O}_{7}$ pair of tetrahedra is depicted (dotted).

$\mathbf{N a P b}$ and $\mathrm{Na}_{2} \mathbf{S}_{\mathbf{4}}$; structures related to the $\mathbf{W}_{\mathbf{3}} \mathrm{Fe}_{3} \mathbf{C}$ type structure

A third way of corner-connecting SQ's is shown in the structure of NaPb (Marsh \& Shoemaker, 1953), Fig. 8. $\mathrm{A}_{\mathrm{Pb}_{4}}$ tetrahedron with an Na atom capping every face creates an SQ. A second set of Na atoms put four triangular caps onto the SQ's. As in the structure of $\mathrm{Na}_{4} \mathrm{SnS}_{4}$, the triangular caps are perpendicular to the tetragonal c axis. The complete structure of NaPb consists of two identical interpenetrating frameworks of corner-connected SQ's. The two frameworks are connected to each other by the triangular caps, as can be seen in Fig. 8, where the two SQ's to the right on the bottom row belong to the second framework.
A comparison with the Fe -atom array in the structure of $\mathrm{W}_{3} \mathrm{Fe}_{3} \mathrm{C}$ (Nyman et al., 1978), Fig. 9, shows that the SQ framework of NaPb is a collapsed ' Fe -atom array', the collapse again obtained by rotating the SQ's around axes parallel to the tetragonal c axis.

Fig. 8. The structure of NaPb projected along the tetragonal axis. Heights, in hundredths of c, indicate the centres of the SQ's. All SQ's, except the two to the right on the bottom row, belong to one SQ framework.

Fig. 9. The Fe part of the structure of $\mathrm{W}_{3} \mathrm{Fe}_{3} \mathrm{C}$. The figures show the heights of the centres of the SQ's. A body-centred tetragonal unit cell is indicated with primed letters.

Fig. 10. The structure of $\mathrm{Na}_{2} \mathrm{~S}_{4}$ projected along the tetragonal axis. Heights shown in the right part are the centres of the SQ's which are unoccupied.

Fig. 11. One framework of corner-connected NaS_{4} tetrahedra in the $\mathrm{Na}_{2} \mathrm{~S}_{4}$ structure. For remaining heights of atoms, see Fig. 10.

A similar framework of SQ's, although more collapsed, is found in the structure of $\mathrm{Na}_{2} \mathrm{~S}_{4}$ (Tegman, 1973), Fig. 10. The rotation of the $\mathrm{S}_{4} \mathrm{Na}_{4}$ SQ's creates some short $\mathrm{S}-\mathrm{S}$ distances (indicated by hatched lines in the left part of Fig. 10) which is a common feature of polysulphides. This framework of SQ's is interpenetrated by two identical frameworks of cornerconnected NaS_{4} tetrahedra.
Such a tetrahedral framework, as shown in Fig. 11, has a high-cristobalite-type structure (O'Keeffe \& Hyde, 1976) and is not connected to either the SQ framework or the second framework of tetrahedra.

Concluding remarks

By using SQ's it is possible to describe the structures mentioned here as frameworks instead of isolated groups of atoms. The geometrical relationships to other structures are thereby made clearer. The method also shows the similarity (geometrically) between structures with different types of bonding, i.e. metallic and ionic compounds.

References

Andersson, S. (1978). J. Solid State Chem. 23, 191-204.
Crevecoeur, C. (1964). Acta Cryst. 17, 757.
Jumas, J. C., Vermot-Gaud-Daniel, F. \& Philippot, E. (1973). Cryst. Struct. Commun. 2, 157-158.
Louisnathan, S. J. (1971). Can. Mineral. 10, 822-837.
Marsh, R. E. \& Shoemaker, D. P. (1953). Acta Cryst. 6, 197-205.
Nyman, H. \& Andersson, S. (1979a). Acta Cryst. A35, 580-583.

Nyman, H. \& Andersson, S. (1979b). Acta Cryst. A 35, 934-937.
Nyman, H., Andersson, S., Hyde, B. G. \& O'Keeffe, M. (1978). J. Solid State Chem. 26, 123-131.

O’Keeffe, M. \& Hyde, B. G. (1976). Acta Cryst. B32, 2923-2936.
Tegman, R. (1973). Acta Cryst. B29, 1463-1469.
Thronberens, W. \& Schuster, H.-U. (1979). Z. Naturforsch. Teil B, 34, 781-783.
Völlenkle, H., Wittmann, A. \& Nowotny, H. (1969). Monatsh. Chem. 100, 295-303.

Acta Cryst. (1983). B39, 532-535

Metal Ordering in $(\mathbf{F e}, \mathbf{V}) \mathbf{S}_{\mathbf{4}}$

By Hiromoto Nakazawa
National Institute for Research in Inorganic Materials, Namiki 1, Sakura-mura, Niihari-gun, Ibaraki 305, Japan
Katsuhiro Tsukimura
Geological Survey of Japan, Namiki 3, Sakura-mura, Niihari-gun, Ibaraki 305, Japan
Hisako Hirai
Department of Geosciences, University of Tsukuba, Tennodai, Sakura-mura, Niihari-gun, Ibaraki 305, Japan
and Hiroaki Wada
National Institute for Research in Inorganic Materials, Namiki 1, Sakura-mura, Niihari-gun, Ibaraki 305, Japan

(Received 15 December 1982; accepted 19 April 1983)

Abstract

The ordered arrangement of metals in $(\mathrm{Fe}, \mathrm{V})_{3} \mathrm{~S}_{4}$ was determined by means of powder X-ray diffraction employing the anomalous dispersion of $\mathrm{Cr} \mathrm{K} \alpha$ radiation for V and Fe atoms, although both atoms have similar atomic numbers. By comparison of the observed and calculated structure factors of $\mathrm{FeV}_{2} \mathrm{~S}_{4}$ and $\left(\mathrm{Fe}_{2} \mathrm{~V}\right)_{2 \cdot 88} \mathrm{~S}_{4}$ for $\mathrm{Cr} K \alpha, \mathrm{Fe} K \alpha$ and $\mathrm{Cu} K \alpha$ radiations, it was concluded that Fe atoms occupy preferentially the $M(1)$ site in the metal layer with vacancies, indicating that Fe atoms have a relatively stronger tendency to have neighbouring metal atoms along the c axis than do V atoms.

Introduction

The transition-metal sulphides, commonly having the NiAs-type structure at high temperatures, undergo one or a series of phase transformations in which their ordered arrangements of vacancies change with decreasing temperature. $\mathrm{V}_{3} \mathrm{~S}_{4}$ is such an example and has a supercell of $\sqrt{3} A \times A \times 2 C$, where A and C are the
cell edges of the NiAs-type fundamental cell. Its structure is the $\mathrm{Cr}_{3} \mathrm{~S}_{4}$ type at room temperature, consisting of two alternate metal layers with and without vacancies and of approximately hexagonal closepacked S layers (Fig. 1) (Kawada, Nakano-Onoda,

Fig. 1. Sublattice of metal atoms, $M(1)$ and $M(2)$, and vacancies in the ($\mathrm{Fe}, \mathrm{V})_{3} \mathrm{~S}_{4}$ structure. Arrows demonstrate the number of neighbouring metals around the $M(1)$ and $M(2)$ sites along the c axis.
© 1983 International Union of Crystallography

